- holomorphic structure
- мат.голоморфная структура
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Holomorphic sheaf — In mathematics, more specifically complex analysis, a holomorphic sheaf (often also called an analytic sheaf) is a natural generalization of the sheaf of holomorphic functions on a complex manifold. DefinitionIt takes a rather involved string of… … Wikipedia
Generalized complex structure — In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures… … Wikipedia
Hodge structure — In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. A mixed Hodge… … Wikipedia
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Géométrie de contact — Structure standard sur ℝ3 : champ de plans La géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d étroits liens avec la géométrie symplectique, la géométrie… … Wikipédia en Français
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Complex manifold — In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk[1] in Cn, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense… … Wikipedia
Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… … Wikipedia
Hermitian manifold — In mathematics, a Hermitian manifold is the complex analog of a Riemannian manifold. Specifically, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define … Wikipedia
Topological string theory — In theoretical physics, topological string theory is a simplified version of string theory. The operators in topological string theory represent the algebra of operators in the full string theory that preserve a certain amount of supersymmetry.… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia